Classification: True vs. False and Positive vs. Negative

https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative

这个以狼来了的故事举例,说的比较清楚

true:判断对了

false:判断错误

positive:认为该事件发生了(即将该数据分到 positive class 里)

negative:认为该事件没有发生

所以

true positive 就是判断该事件发生了,且你判断对了。(将该数据分类到 positive 里面,且分类正确。)

true negative 就是判断该事件没有发生,且你判断对了。

即以 true 开头的都是作出了正确的选择(即预测),分类正确。

A true positive is an outcome where the model correctly predicts the positive class. Similarly, a true negative is an outcome where the model correctly predicts the negative class.

A false positive is an outcome where the model incorrectly predicts the positive class. And a false negative is an outcome where the model incorrectly predicts the negative class.

Last updated

Was this helpful?