Classification: True vs. False and Positive vs. Negative
这个以狼来了的故事举例,说的比较清楚
true:判断对了
false:判断错误
positive:认为该事件发生了(即将该数据分到 positive class 里)
negative:认为该事件没有发生
所以
true positive 就是判断该事件发生了,且你判断对了。(将该数据分类到 positive 里面,且分类正确。)
true negative 就是判断该事件没有发生,且你判断对了。
即以 true 开头的都是作出了正确的选择(即预测),分类正确。
A true positive is an outcome where the model correctly predicts the positive class. Similarly, a true negative is an outcome where the model correctly predicts the negative class.
A false positive is an outcome where the model incorrectly predicts the positive class. And a false negative is an outcome where the model incorrectly predicts the negative class.
Last updated
Was this helpful?